Пакет

nccl2-2.1.2--cuda-9.0.176
Module
Version
Flavor
cuda-9.0.176
Other flavors
Роль
Requires

A pre-configured and fully integrated software stack with PyTorch, an open source machine learning library, and Python 2.7. It provides a stable and tested execution environment for training, inference, or running as an API service. The stack can be easily integrated into continuous integration and deployment workflows. It is designed for short and long-running high-performance tasks and optimized for running on NVidia GPU.
pytorch:0.3.0, python:2.7.14, cuda:9.0.176, cudnn:7.0.5, cuda_only-nvidia_drivers:384.111, selfmanagement_preset, development_preset:1

The pre-configured and ready-to-use runtime environment for the Fast.ai's courses Practical Deep Learning for Coders, 2018 edition, part 1. It includes Python 3.6 and PyTorch 0.3.0. The stack also includes CUDA and cuDNN, and is optimized for running on NVidia GPU.
fast_ai-course:2018-1, cuda:9.0.176, cudnn:7.0.5, cuda_only-nvidia_drivers:384.111

The pre-configured and ready-to-use runtime environment for the CS231n course - Convolutional Neural Networks for Visual Recognition, Stanford University, Spring 2017. It includes latest versions of Python 3, TensorFlow, and PyTorch. The stack also includes CUDA and cuDNN, and is optimized for running on NVidia GPU.
stanford-cs231n-course:1617spring, tensorflow:1.5.0, pytorch:0.3.0, keras:2.1.2, python:3.6.3, cuda:9.0.176, cudnn:7.0.5, cuda_only-nvidia_drivers:384.111

The pre-configured and ready-to-use runtime environment for the CS231n course - Convolutional Neural Networks for Visual Recognition, Stanford University, Spring 2017. It includes latest versions of Python 2, TensorFlow, and PyTorch. The stack also includes CUDA and cuDNN, and is optimized for running on NVidia GPU.
stanford-cs231n-course:1617spring, tensorflow:1.5.0, pytorch:0.3.0, keras:2.1.2, python:2.7.14, cuda:9.0.176, cudnn:7.0.5, cuda_only-nvidia_drivers:384.111

A pre-configured and fully integrated software stack with Theano, a numerical computation library for Python, and Python 3.6. It provides a stable and tested execution environment for training, inference, or running as an API service. The stack can be easily integrated into continuous integration and deployment workflows. It is designed for short and long-running high-performance tasks and optimized for running on NVidia GPU.
theano:1.0.0, python:3.6.3, cuda:9.0.176, cudnn:7.0.5, cuda_only-nvidia_drivers:384.98, development_preset